Analysis of the Lagrange–SQP–Newton Method for the Control of a Phase Field Equation

نویسندگان

  • Matthias Heinkenschloss
  • Fredi Tröltzsch
چکیده

This paper investigates the local convergence of the Lagrange–SQP–Newton method applied to an optimal control problem governed by a phase field equation with distributed control. The phase field equation is a system of two semilinear parabolic differential equations. Stability analysis of optimization problems and regularity results for parabolic differential equations are used to proof convergence of the controls with respect to the L(Q) norm and with respect to the L(Q) norm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrange { Sqp { Newton Method for the Control of a Phase Field Equation

This paper investigates the local convergence of the Lagrange{SQP{Newton method applied to an optimal control problem governed by a phase eld equation with distributed control. The phase eld equation is a system of two semilinear parabolic diierential equations. Stability analysis of optimization problems and regularity results for parabolic diierential equations are used to proof convergence o...

متن کامل

Analysis of Accuracy of Interpolation Methods in Estimating the Output Factors for Square Fields in Medical Linear Accelerator

Introduction: To estimate the accuracy levels of Lagrange, Newton backward interpolation, and linear interpolation methods in estimating the output factors for square fields used in linear accelerator for 6 MV photons at various depths. Materials and Methods: Ionization measurements were carried out in radiation field analyzer in linear accelerator for 6 MV beams at the depths of 5 and 10 cm by...

متن کامل

On the Lagrange--Newton--SQP Method for the Optimal Control of Semilinear Parabolic Equations

A class of Lagrange-Newton-SQP methods is investigated for optimal control problems governed by semilinear parabolic initial-boundary value problems. Distributed and boundary controls are given, restricted by pointwise upper and lower bounds. The convergence of the method is discussed in appropriate Banach spaces. Based on a weak second order suucient optimality condition for the reference solu...

متن کامل

Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems

Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange...

متن کامل

Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver

Large scale optimization of systems governed by partial differential equations (PDEs) is a frontier problem in scientific computation. The state-of-the-art for such problems is reduced quasi-Newton sequential quadratic programming (SQP) methods. These methods take full advantage of existing PDE solver technology and parallelize well. However, their algorithmic scalability is questionable; for c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999